

Introduction

- Current type I JAK2 inhibitors including ruxolitinib (Rux) and fedratinib bind the active conformation of the kinase domain and improve symptoms and outcomes in MPNs; however, mutant allele burden remains essentially unchanged, and efficacy wanes over time. Moreover, sustained JAK/STAT signaling in the setting of type I inhibition plays a critical role in the MPN cell persistence (1).
- Type II JAK2 inhibitors bind the inactive conformation of the kinase domain, overcome Rux persistence in vitro and reduce *Jak2VF* allele fraction in vivo, suggesting an improved approach to targeting JAK2 with enhanced clinical efficacy and potential disease modification (2).
- Current type II JAK2 inhibitors, including CHZ868, are limited by lack of kinome specificity and off-target toxicity. We therefore sought to develop novel type II JAK2 inhibitors with improved potency and selectivity.
- Computational free energy perturbation and structure-activity relationship based methods were used to identify lead type II JAK2 inhibitor compounds (3). This work, followed by Absorption, Distribution, Metabolism and Excretion modeling led to the development of AJ1-10502.

Potency, Selectivity, and Drug-Like Properties of AJ1-10502

		AJ1-10502	(
JAK2 binding assay [†]	JAK2 Kd (nM)	0.70	
JAK2 cellular activity	SET2-pSTAT5 IC50 (nM)	64	
JAK family biochemical selectivity (fold over Kd)	fold selectivity over JAK1	271x	
	fold selectivity over JAK3	1857x	
	fold selectivity over TYK2	60x	
Protoin binding	Human PPB (% bound)	96	
r rotein binding	Mouse PPB (% bound)	98	
Human in vitro stability	Clint (mL/min/kg) hepatocytes	14	
Mouse PK (IV) 1 mg/kg*	Cl _{obs} (mL/min/kg)	20	
Mouse PK (PO) 60 mg/kg*	T _{1/2} (h)	2.6	
	C _{max} (ng/mL)	14967	
	F (%)	62	
	AUC (h*ng/mL)	30864	
Physical properties	Solubility (µM) (pH = 7.4)	74	

[†]JAK2-JH1 (Y1007/1008F) Type II binding assay *PK study conducted in C57/BL6 mice. AJ1-10502 IV formulation: 10% DMSO/60% PEG400/saline; PO formulation: 20% HPβCD/saline (pH=4)

 SET-2 cells were made persistent by culturing at increasing rux 	Compound	SET2 Naive IC50 (nM)	SET2-Rux IC50
concentrations (up to 700 nM)	Ruxolitinib	86	7:
 AJ1-10502 retains activity against 	CHZ868	80	1
rux persistent SET-2 cells	AJ1-10502	379	9

RIO ______

Compound	GM-CSF-pSTAT5 IC50 (nM) (JAK2)	IL2-pSTAT5 IC50 (nM) (JAK1/3)	IL12-pSTAT4 IC50 (nM) (TYK2/JA
Ruxolitinib	48	14	33
AJ1-10502	77	1609	678

The Second Generation Type II JAK2 inhibitor, AJ1-10502, Demonstrates Enhanced Selectivity, Improved Therapeutic Efficacy and Reduced Mutant Cell Fraction Compared to Type I JAK2 inhibitors in Models of Myeloproliferative Neoplasms (MPNs) <u>Shivam Rai</u>¹, Jan Stetka¹, Marc Usart¹, Hui Hao-Shen¹, Young Park², Anthony Martinez-Benitez², Matthew Wereski², Emily Guzzardi², Remie Houston², Sonali Persaud² Hailey Ramzan², Alan Futran³, Charley Xu³, Jeremy Greenwood³, Sayan Mondal³, Craig Masse⁴, Ross Levine², Radek Skoda¹, Andrew Dunbar²

¹University Hospital Basel and University of Basel; ²Memorial Sloan Kettering Cancer Center; ³Schrodinger Inc.; ⁴Ajax Therapeutics

